Lemma
(i−1n−1)+(in−1)=(in)
(in)는 binomial coefficient이다.
Proof
(i−1n−1)+(in−1)=(i−1)!(n−i)!(n−1)!+i!(n−i−1)!(n−1)!=(n−1)!i!(n−i)!(n−i)+i=i!(n−i)!n!=(in)□
Explicit form of Bézier curve
다음 두 식은 동치이다.
BP0(0)(t)BP0,P1,...,Pn(n)(t)=P0, t∈[0,1]=(1−t)BP0,...,Pn−1(t)+tBP1,...,Pn(t), t∈[0,1]ifn>0−(1)
BP0,...,Pn(n)(t)=i=0∑n(in)(1−t)n−itiPi−(2)
Proof
간단하게 BP0,...,Pn(t)을 B0...n(t)이라고 쓰자.
By induction.
i) When n = 0: trivial
ii) When n > 0:
B0...n(n)(t)=(1−t)B0...(n−1)+tB1...n=[(1−t)i=0∑n−1(in−1)(1−t)n−1−itiPi]+[ti=0∑n−1(in−1)(1−t)n−1−itiPi+1]=i=0∑n−1(in−1)(1−t)n−itiPi+i=1∑n(i−1n−1)(1−t)n−itiPi=(0n−1)(1−t)nP0+i=1∑n−1[(in−1)+(i−1n−1)](1−t)n−itiPi+(n−1n−1)tnPn=(1−t)nP0+i=1∑n−1(in)(1−t)n−itiPi+tnPnby above lemma=i=0∑n(in)(1−t)n−itiPi□